
Solutions to Problem 1.

a. Pr{Y2 = 5} =
e−2(2)(2(2))5

5!
≈ 0.16

b. Pr{Y4 − Y3 = 1} = Pr{Y1 = 1} =
e−221

1!
≈ 0.271

c. Pr{Y6 − Y3 = 4 ∣Y3 = 2} = Pr{Y3 = 4} =
e−2(3)(2(3))4

4!
≈ 0.134

d. Pr{Y5 = 4 ∣Y4 = 2} = Pr{Y5 − Y4 = 2 ∣Y4 = 2} = Pr{Y1 = 2} =
e−222

2!
≈ 0.271

Solutions to Problem 2. Let λ = 2. Let t bemeasured in hours from 6 a.m.

a. Pr{Y4 = 9 ∣Y2 = 6} = Pr{Y4 − Y2 = 3 ∣Y2 = 6}
= Pr{Y2 = 3}

=
e−2(2)(2(2))3

3!
≈ 0.195

b. The expected time between successive arrivals is E[Gn] = 1/2 hour. The probability that the time between
successive arrivals will bemore than 1 hour is

Pr{Gn > 1} = 1 − Pr{Gn ≤ 1} = 1 − FGn(1) = 1 − (1 − e−2(1)
) = e−2

≈ 0.135

c. The expected time until the first patient arrives is E[G1] = 1/2 hour. The probability that the first patient arrives
in 15minutes or less is

Pr{G1 ≤ 1/4} = FG1(1/4) = 1 − e
−2(1/4)

≈ 0.393

d. Pr{T13 ≤ 7} = FT13(7) = 1 −
12
∑
k=0

e−2(7)(2(7))k

k!
≈ 0.641

Solutions to Problem 3. Let λ = 1/50 defect per m2. Let t bemeasured in m2 ofmetal.

Pr{Y200 ≥ 7} = 1 − Pr{Y200 ≤ 6}

= 1 −
6
∑
k=0

e−(1/50)(200)(200/50)k

k!
≈ 0.111

Solutions to Problem 4.

a. Pr{Y4 > 30 ∣Y2 = 10} = Pr{Y4 − Y2 > 20 ∣Y2 = 10}
= Pr{Y4 − Y2 > 20}
= Pr{Y2 > 20}
= 1 − Pr{Y2 ≤ 20}

= 1 −
20
∑
k=0

e−8(2)(8(2))k

k!
≈ 0.1318
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b. Pr{T50 ≤ 6} = FT50(6) = 1 −
49
∑
k=0

e−8(6)(8(6))k

k!
≈ 0.405

Note. You should get the same answer if you computed Pr{Y6 ≥ 50} instead.

c. Pr{T100 ≤ 12 ∣Y6 = 40} = Pr{Y12 ≥ 100 ∣Y6 = 40}
= Pr{Y12 − Y6 ≥ 60 ∣Y6 = 40}
= Pr{Y12 − Y6 ≥ 60}
= Pr{Y6 ≥ 60}

= 1 −
59
∑
k=0

e−8(6)(8(6))k

k!
≈ 0.0523

d. E[T4] =
4
8
=
1
2

Solutions to Problem 5. The rate of errors after the nth proofreading is

λ = 1
2n

errors per 1000 words

So, the probability of no errors after the nth proofreading is

Pr{Y200 = 0} =
e−200 1

2n (200 1
2n )

0

0!
= e−

200
2n

We want to find the smallest n such that Pr{Y200 = 0} ≥ 0.98:

e−
200
2n ≥ 0.98

−
200
2n
≥ ln(0.98)

2n ≥ −
200

ln(0.98)
≈ 9900

⇒ n ≥ 14 (by trial-and-error)

Solutions to Problem 6.

a. Probably a good approximation. Independent increments is likely satisfied, because there is a large number of
potential customers who act independently. Stationary increments is likely satisfied, as long as we restrict our
attention to periods of the day when the arrival rate is roughly constant.

b. Not a good approximation. Independent increments is likely violated, sincemost arrivals occur during a brief
period just prior to the start of the game, and only a few before or after this period.

c. Not a good approximation. Independent increments is likely violated if patients are scheduled, and therefore
their arrivals are anticipated.

d. Not a good approximation. Stationary increments is likely violated, because the rate of finding bugs will decrease
over time.

e. Probably a good approximation. Independent increments is likely satisfied because fires happen (largely)
independently, and there are a large number of potential arrivals (buildings on fire). Stationary increments is
likely satisfied, as long as we restrict our attention to periods of the day when the fire incident rate is roughly
constant (e.g., daytime vs. nighttime).
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